Giải thuật chia để trị (divide and conquer)
Giải thuật chia để trị (Divide and Conquer) là gì?
Phương pháp chia để trị (Divide and Conquer) là một phương pháp quan trọng trong việc thiết kế các giải thuật. Ý tưởng của phương pháp này khá đơn giản và rất dễ hiểu: Khi cần giải quyết một bài toán, ta sẽ tiến hành chia bài toán đó thành các bài toán con nhỏ hơn. Tiếp tục chia cho đến khi các bài toán nhỏ này không thể chia thêm nữa, khi đó ta sẽ giải quyết các bài toán nhỏ nhất này và cuối cùng kết hợp giải pháp của tất cả các bài toán nhỏ để tìm ra giải pháp của bài toán ban đầu.
Nói chung, bạn có thể hiểu giải thuật chia để trị (Divide and Conquer) qua 3 tiến trình sau:
Tiến trình 1: Chia nhỏ (Divide/Break)
Trong bước này, chúng ta chia bài toán ban đầu thành các bài toán con. Mỗi bài toán con nên là một phần của bài toán ban đầu. Nói chung, bước này sử dụng phương pháp đệ qui để chia nhỏ các bài toán cho đến khi không thể chia thêm nữa. Khi đó, các bài toán con được gọi là "atomic – nguyên tử", nhưng chúng vẫn biểu diễn một phần nào đó của bài toán ban đầu.
Tiến trình 2: Giải bài toán con (Conquer/Solve)
Trong bước này, các bài toán con được giải.
Tiến trình 3: Kết hợp lời giải (Merge/Combine)
Sau khi các bài toán con đã được giải, trong bước này chúng ta sẽ kết hợp chúng một cách đệ qui để tìm ra giải pháp cho bài toán ban đầu.
Hạn chế của giải thuật chia để trị (Devide and Conquer)
Giải thuật chia để trị tồn tại hai hạn chế, đó là:
Làm thế nào để chia tách bài toán một cách hợp lý thành các bài toán con, bởi vì nếu các bài toán con được giải quyết bằng các thuật toán khác nhau thì sẽ rất phức tạp.
Việc kết hợp lời giải các bài toán con được thực hiện như thế nào.
Ví dụ giải thuật chia để trị
Dưới đây là một số giải thuật được xây dựng dựa trên phương pháp chia để trị (Divide and Conquer):
- Giải thuật sắp xếp trộn (Merge Sort)
- Giải thuật sắp xếp nhanh (Quick Sort)
- Giải thuật tìm kiếm nhị phân (Binary Search)
- Nhân ma trận của Strassen
Theo Tutorialspoint
Bài trước: Giải thuật tham lam (Greedy Algorithm)
Bạn nên đọc
-
Công thức tính chu vi hình tứ giác, diện tích hình tứ giác
-
Công thức tính diện tích hình bình hành, chu vi hình bình hành
-
Công thức tính diện tích hình thang: thường, vuông, cân
-
Công thức tính diện tích hình hộp chữ nhật
-
Công thức tính diện tích hình thoi, chu vi hình thoi
-
Công thức tính diện tích mặt cầu, thể tích khối cầu
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

- Code NgầuThích · Phản hồi · 1 · 17/08/20
- Code NgầuThích · Phản hồi · 0 · 17/08/20
Cũ vẫn chất
-
Stt thả thính thời tiết nắng, nóng, lạnh, mưa… hay
Hôm qua -
'Giấu giếm' hay 'dấu diếm' đúng chính tả
Hôm qua -
Code Blox Fruit 22/07/2025, giftcode Blox Fruits mới nhất
Hôm qua 89 -
Hướng dẫn xóa định dạng bảng trong Excel
Hôm qua 1 -
Cách xóa tùy chọn khởi động cũ trong boot menu trên Windows 10
Hôm qua -
Cách cập nhật iPhone lên phiên bản iOS mới nhất
Hôm qua -
46 Stt mệt mỏi với công việc, cuộc sống
Hôm qua -
Cách in file PDF trên máy tính, lap top, điện thoại hoặc máy tính bảng
Hôm qua -
Đây là cách xóa phân vùng Recovery và phân vùng Recovery 450 MB trên Windows 10
Hôm qua -
Cách chặn kết nối Internet phần mềm, ứng dụng Windows 10
Hôm qua