Công thức lượng giác là kiến thức cơ bản mà học sinh lớp 9, 10, 11 cần nắm được. Bài viết sẽ tổng hợp tất cả công thức sin cos và tính lượng giác khác để học sinh dễ xem lại khi cần.
Công thức lượng giác là các phương trình liên hệ các tỷ số lượng giác khác nhau với nhau. Chúng rất cần thiết để giải quyết nhiều bài toán trong toán học, vật lý, kỹ thuật và các lĩnh vực khác.
Một số công thức lượng giác phổ biến là:
- Định nghĩa cơ bản: Các công thức này định nghĩa các tỷ số lượng giác (sin, cos, tan, v.v.) theo các cạnh của một tam giác vuông.
- Định lý Pythagore: Định lý này liên hệ độ dài các cạnh trong một tam giác vuông.
- Mối quan hệ góc: Các công thức này liên hệ các tỷ số lượng giác của các góc khác nhau, chẳng hạn như công thức tổng và hiệu, công thức góc đôi và công thức góc một nửa.
- Đồng nhất thức nghịch đảo: Các công thức này biểu thị một tỷ số lượng giác theo một tỷ số lượng giác khác, chẳng hạn như sin(θ) = 1/coc(θ).
- Đường tròn đơn vị: Đường tròn đơn vị là biểu diễn đồ họa của các tỷ số lượng giác và có thể được sử dụng để suy ra nhiều công thức khác.
- Định luật Sin và Định luật Cosin: Các định luật này liên hệ đến các cạnh và góc của mọi tam giác, không chỉ tam giác vuông.
Bài viết tổng hợp các công thức lượng giác đầy đủ nhất dùng trong cả chương trình toán lớp 9, 10, 11, bao gồm các công thức lượng giác cơ bản, công thức nhân, biến đổi tích thành cổng, lượng giác của các cung đặc biệt, giá trị lượng giác của các góc đặc biệt, các công thức nghiệm cơ bản... Hãy nắm vững những công thức này để có thể triển khai các dạng bài tập về lượng giác. Mời các bạn tham khảo.
11 Công thức lượng giác phải nắm chắc
- Khái niệm tỉ số lượng giác của một góc nhọn
- Công thức lượng giác cơ bản
- Công thức cộng lượng giác
- Công thức các cung liên kết trên đường tròn lượng giác
- Công thức nhân
- Công thức hạ bậc
- Công thức biến tổng thành tích
- Công thức biến đổi tích thành tổng
- Nghiệm phương trình lượng giác
- 9. Dấu của các giá trị lượng giác
- Bảng giá trị lượng giác một số góc đặc biệt
- Công thức lượng giác bổ sung
Khái niệm tỉ số lượng giác của một góc nhọn
Với:
- sin α: là tỉ số giữa cạnh đối và cạnh huyền của góc α
- cos α: là tỉ số giữa cạnh kề và cạnh huyền của góc α
- tan α: là tỉ số giữa cạnh đối và cạnh kề của góc α
- cot α: là tỉ số giữa cạnh kề và cạnh đối của góc α
Mẹo học thuộc : Sin đi học, Cos không hư, Tan đoàn kết, Cot kết đoàn
Công thức chuyển đổi góc sang radian và ngược lại
Công thức lượng giác cơ bản
với
với
Công thức cộng lượng giác
1. sin (a ± b) = sin a.cos b ± cos a.sin b
2. cos (a + b) = cos a.cos b - sin a.sin b
3. cos (a - b) = cos a.cos b + sin a.sin b
Mẹo nhớ công thức cộng: Sin thì sin cos cos sin, cos thì cos cos sin sin dấu trừ. Tan thì tan nọ tan kia chia cho mẫu số 1 trừ tan tan.
Công thức các cung liên kết trên đường tròn lượng giác
Mẹo nhớ: cos đối, sin bù, phụ chéo, tan hơn kém π
Với mọi góc lượng giác α và số nguyên k ta có:
Hai góc đối nhau:
- cos (-x) = cos x
- sin (-x) = -sin x
- tan (-x) = -tan x
- cot (-x) = -cot x
Hai góc bù nhau:
- sin (π - x) = sin x
- cos (π - x) = -cos x
- tan (π - x) = -tan x
- cot (π - x) = -cot x
Hai góc phụ nhau:
- sin (π/2 - x) = cos x
- cos (π/2 - x) = sin x
- tan (π/2 - x) = cot x
- cot (π/2 - x) = tan x
Hai góc hơn kém π:
- sin (π + x) = -sin x
- cos (π + x) = -cos x
- tan (π + x) = tan x
- cot (π + x) = cot x
Hai góc hơn kém π/2:
- sin (π/2 + x) = cos x
- cos (π/2 + x) = -sin x
- tan (π/2 + x) = -cot x
- cot (π/2 + x) = -tan x
Công thức nhân đôi
Công thức nhân đôi
- sin2a = 2sina.cosa
- cos2a = cos2a - sin2a = 2cos2a - 1 = 1 - 2sin2a
Công thức nhân ba
- sin3a = 3sina - 4sin3a
- cos3a = 4cos3a - 3cosa
Công thức nhân bốn
- sin4a = 4.sina.cos3a - 4.cosa.sin3a
- cos4a = 8.cos4a - 8.cos2a + 1 hoặc cos4a = 8.sin4a - 8.sin2a + 1
Công thức hạ bậc
Thực ra những công thức này đều được biến đổi ra từ công thức lượng giác cơ bản, ví dụ như: sin2a=1 - cos2a = 1 - (cos2a + 1)/2 = (1 - cos2a)/2.
Công thức biến đổi tổng thành tích
Mẹo nhớ: cos cộng cos bằng 2 cos cos, cos trừ cos bằng trừ 2 sin sin; sin cộng sin bằng 2 sin cos, sin trừ sin bằng 2 cos sin.
Công thức biến đổi tích thành tổng
Phương trình lượng giác
Phương trình lượng giác cơ bản
3. tan a = tan b ⇔ a = b + kπ; (k ∈ Z)
4. cot a = cot b ⇔ a = b + kπ; (k ∈ Z)
Phương trình lượng giác đặc biệt
- sin a = 0 ⇔ a = kπ; (k ∈ Z)
- sin a = 1 ⇔ a = π/2 + k2π; (k ∈ Z)
- sin a = -1 ⇔ a = -π/2 + k2π; (k ∈ Z)
- cos a = 0 ⇔ a = π/2 + kπ; (k ∈ Z)
- cos a = 1 ⇔ a = k2π; (k ∈ Z)
- cos a = -1 ⇔ a = π + k2π; (k ∈ Z)
Dấu của các giá trị lượng giác
Góc phần tư số | I | II | III | IV |
Giá trị lượng giác | ||||
sin x | + | + | - | - |
cos x | + | - | - | + |
tan x | + | - | + | - |
cot x | + | - | + | - |
Bảng giá trị lượng giác một số góc đặc biệt
Quan sát trực quan các góc đặc biệt trên đường tròn lượng giác như sau:
Tỉ số lượng giác của 2 góc phụ nhau. (α + β = 90°)
sin α = cos β | cos α = sin β |
tan α = cot β | cot α = tan β |
Công thức lượng giác bổ sung
Biểu diễn công thức theo