Sự phát triển và tương lai của Wi-Fi – Phần 2

Sự phát triển và tương lai của Wi-Fi – Phần 1

Quản trị mạngTrong phần hai của loạt bài này, chúng tôi sẽ tiếp tục giới thiệu cho các bạn về trạng thái hiện hành của công nghệ Wi-Fi, 802.11n.

Giới thiệu

Trong phần trước của loạt bài này, chúng tôi đã bắt đầu giới thiệu về Viện các kỹ sư điện và điện tử - Institute for Electrical and Electronics Engineers (IEEE) và đã mô tả sự phát triển của công nghệ Wi-Fi. Trong phần hai này, chúng tôi sẽ giới thiệu công nghệ Wi-Fi trong hình thể gần đây nhất, được biết đến với chuẩn 802.11n.

MIMO

Sự cách tân mới trong 802.11n chính là sự xuất hiện của anten Multiple Input Multiple Output (MIMO) trong các chuẩn Wi-Fi. Các cấu hình anten Wi-Fi trước chỉ sử dụng công nghệ Single Input Single Output (SISO). Như tên gợi ý của nó, MIMO có nghĩa rằng có nhiều anten để thu cũng như nhiều anten để phát dữ liệu. MIMO là một trong ba cấu hình chung được sử dụng cho công nghệ đa anten. Các cấu hình này, như thể hiện trong hình 1 là:

  1. Single Input Multiple Output (SIMO) – Một đầu vào, nhiều đầu ra
  2. Multiple Input Single Output (MISO) – Nhiều đầu vào, một đầu ra
  3. Multiple Input Multiple Output (MIMO) – Nhiều đầu vào, nhiều đầu ra
Hình 1: Các cấu hình anten khác nhau

Công nghệ MIMO có rất nhiều lợi ích đối với người dùng. Đầu tiên đó là trường hợp có nhiều người dùng cùng truy cập vào cùng một tài nguyên Wi-Fi. Cho ví dụ, trong văn phòng của bạn có thể có một nút Wi-Fi đặt ở phòng chờ, bạn và các đồng nghiệp của mình có thể kết nối đến nút này khi uống cafe sáng trong giờ nghỉ giải lao ở đó. Trước khi có chuẩn 802.11n, nếu có nhiều người dùng cùng truy cập vào một nút 802.11n, lúc này hiệu suất truy cập sẽ bị giảm một cách đáng kể. Còn với công nghệ mới này, mỗi anten có thể được gán cho một người dùng và tất cả người dùng (giả định rằng số lượng người dùng nhỏ hơn hoặc bằng số anten) sẽ không nhận thấy sự giảm về tốc độ truy cập.

Sự phân bố của anten

MIMO cũng có nhiều lợi ích khi chỉ có một người dùng. Chúng ta hãy quay trở lại kịch bản phòng chờ của văn phòng. Lúc này cho rằng chỉ có một người dùng đang truy cập vào nút Wi-Fi. Mặc dù một trong số các đồng nghiệp của bạn đang sử dụng điện thoại di động blackberry của họ thì vẫn có một lượng sóng ngắn đang được phát ra, hay thậm chí có ai đó đang sử dụng điện thoại không dây. Đây là một vấn đề cũ đối với Wi-Fi. Nó là tình huống mà trong đó chỉ có một người sử dụng Wi-Fi nhưng lại rất khó khăn trong việc nhận tín hiệu vì có quá nhiều tạp âm trong môi trường (tạp âm điện từ trường). MIMO có thể trung hòa sự xuyên nhiễu này bằng cách gửi đi cùng một tín hiệu đến cùng người dùng nhưng trên nhiều anten. Người dùng nhận các tín hiệu này có thể so sánh một trong các tín hiệu với nhau, sau đó quyết định xem tín hiệu nào là thực (tín hiệu trước khi bị xuyên nhiễu).

Phương pháp cho việc đếm sự xuyên nhiễu tín hiệu này được gọi là phân bố anten. Có 5 cách chung để thực hiện sự phân bố này.

Phân bố theo không gian

Khi một ứng dụng sử dụng một anten phân bố theo không gian thì trạm gốc phải có nhiều anten, các anten này được đặt tách biệt nhau về mặt vật lý. Thông thường các anten này sẽ có cùng các đặc tính. Khoảng cách giữa các anten có thể bất kỳ. Nhưng thường thì khoảng cách này tương đương với độ dài bước sóng của tín hiệu được phát đi. Trong một số trường hợp khác, anten có thể được đặt cách nhau đến vào dặm. Đây là lược đồ phân bố anten thường được sử dụng nhất là bạn sẽ thấy trong các trạm gốc Wi-Fi 802.11n.

Phân bố theo kiểu dáng

Sự phân bố theo kiểu mẫu thường được sử dụng nhất với các anten định hướng. Trong lược đồ phân bố anten này, nhiều anten định hướng sẽ được đặt gần với anten có kiểu mẫu bức xạ khác. Lược đồ này có thể cung cấp hiệu suất tốt hơn khi đem so với các lược đồ đang sử dụng một anten đa hướng.

Phân bố theo độ phân cực

Sự phân bố theo độ phân cực gồm có một cặp (hoặc nhiều cặp) anten, mỗi cặp có một phân cực đối diện. Vì các tín hiệu được phát từ một trong các anten này có phân cực đối diện diện nên sự xuyên nhiễu bởi các tín hiệu cũng sẽ khác. Chính vì vậy bộ thu sẽ có khả năng nhận tín hiệu tốt hơn, hoặc tối thiểu bộ thu có thể sử dụng cả hai tín hiệu để xây dựng lại sự truyền phát ban đầu.

Phân bố theo mảng thích nghi

Mảng thích nghi gồm có một mảng các anten có thể thay đổi các kiểu phân cực của chúng một cách dễ dàng. Kiểu anten này rất đắt và yêu cầu rất nhiều sự điều khiển, và điều này càng làm cho giá thành của chúng đắt lên. Với lý do này, kiểu anten này hầu như khó phù hợp với công nghệ Wi-Fi.

Phân bố thu/phát

Sự phân bố thu/phát có thể xuất hiện khi một trạm gốc có một anten phát và một anten khác để thu. Không có nhiều ưu điểm về thu phát trong lược đồ này, mặc dù vậy nó có thể tiết kiệm được nhiều chi phí và không cần bộ ghép song công duplexer.

Các lợi ích trong tương lai

Ở trên chúng tôi đã đề cập rằng MIMO sẽ đem lại nhiều lợi ích đến người dùng. Nhưng những lợi ích kể trên vẫn chưa đủ, MIMO vẫn có nhiều lợi ích khác.

Dirty Paper Coding

Một công nghệ mà chúng tôi cảm thấy rất thú vị đó là công nghệ mang tên Dirty Paper Coding (DPC). Về cơ bản DPC là một vấn đề toán học và có liên quan đến việc mã hóa các tín hiệu trước khi truyền tải. Trước khi giải thích về DPC là gì, hãy cho phép chúng tôi giải thích công nghệ này sẽ giải quyết vấn đề gì. Chúng ta hãy quay trở lại kịch bản phòng chờ của văn phòng , nơi đang có bạn và một số đồng nghiệp của bạn đang truy cập vào trạm gốc. Như tôi đã giải thích trước, MIMO cho phép mỗi anten được gán cho mỗi một người dùng để mỗi người dùng sẽ sử dụng anten trạm gốc của riêng mình. Tuy nhiên điều này làm cho các tín hiệu sẽ xuyên nhiễu lẫn nhau và làm giảm phạm vi truyền tải. Lúc này DPC có nhiệm vụ sẽ giải quyết vấn đề. Về cơ bản, thuyết DPC cho chúng ta hiểu rằng, nếu bạn biết cả hai tín hiệu đang được phát thì bạn sẽ biết sự xuyên nhiễu và có thể thay đổi các tín hiệu để bộ nhận sẽ nhận được tín hiệu dự định.

Điều này nghe có vẻ đơn giản nhưng trong thực tế lại không diễn ra như vậy. Đó là vì nếu bạn thay đổi một trong số các tín hiệu thì nhiễu cũng thay đổi, từ đó yêu cầu bạn thay đổi tín hiệu khác, và lại tiếp tục làm thay đổi nhiễu. Vì vậy với các tín hiệu phức tạp đang được phát trên trạm gốc Wi-Fi, sẽ rất khó tính toán những thay đổi được yêu cầu cho DPC. Thậm chí còn khó hơn để thực hiện đủ nhanh để người dùng không thấy sự chậm trễ.

Đa nguồn cho một người dùng

Đa nguồn cho một người dùng (MSSU) có nghĩa rằng trong trường hợp này chỉ có một người dùng kết nối đến một trạm gốc MIMO. Lúc này, thay vì mỗi một anten phát đi một bản copy dữ liệu giống nhau, dữ liệu có thể được phân chia và mỗi một anten có thể phát đi một phần dữ liệu để rồi sau đó có thể lắp ráp lại bởi bộ nhận. Theo lý thuyết của phương pháp này, người dùng có thể nhận cùng một số lượng dữ liệu trong phần nửa thời gian.

Thứ Bảy, 10/10/2009 11:21
31 👨 2.255
0 Bình luận
Sắp xếp theo